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High Performance Recelver Needed Everywhere !

More
Users !
Newer
Applications !

Spectrum Congestion I
Looking for ?

Microwave High Performance Monitoring Receiver Solution
20MHz-60GHz ?




Widebnad Monitoring Receiver

R&S ESMD Wide Band Monitoring Receliver
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High Dynamic Range !!!




Monitoring Receivers

High Dynmaic Range Microwave Monitoring Receivers

Searching for faults in professional radio networks
Comprehensive spectrum analysis

Monitoring of user-specific radio services
Monitoring on behalf of regulating authorities

Handoff receivers, i.e. parallel demodulation of narrowband
signals and simultaneous broadband spectrum scanning=High
Dynamic Range

Critical Parameters: Noise Figure, IP2, IP3, and instantaneous
dynamic range

Best solution: Software Defined Radio




Software Defined Radio

Software Defined Radio

 Want to make all parameters digitally tunable
- What Parameters?
« RX/TX Frequency
« Bandwidth

 Impedance Match




Software Defined Radio

Definition:
A Software Defined Radio (SDR) is a communicaton system, where
the major part of signal processing components, typically realized

In hardware are instead replaced by digital algorithms, written in
software” (FPGA).

First publication (February 26-28, 1985):

Ulrich L. Rohde: Digital HF Radio: A Sampling of Techniques,
presented at the Third International Conference on HF Communication
Systems and Techniques, London, England, February 26-28, 1985,
Classified Session (U.S Secret).

http://en.wikipedia.org/wiki/Software-defined radio



http://en.wikipedia.org/wiki/Software-defined_radio
http://en.wikipedia.org/wiki/Software-defined_radio
http://en.wikipedia.org/wiki/Software-defined_radio
http://en.wikipedia.org/wiki/Software-defined_radio
http://en.wikipedia.org/wiki/Software-defined_radio
http://en.wikipedia.org/wiki/Software-defined_radio

Typical Microwave Recelver

Principal Arrangment for Typical Microwave Receivers

Preselection  LNA Mixer AGC  Anti-Aliasing Digital Front-End Demodulation/
et Filter._ Processing Synchronisation
vi \':
> %\“"'\ ¥ M g ”| Host PC
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_______________________________ Lo
Analog RF-Front-End Digital Front-End  Baseband Processing

The analog front end is downconverting the RF signals into an IF range
<200MHz




Microwave Receiver, Cont‘d.

Principal Arrangment for Typical Microwave Receivers

Preselection LNA Mixer AGC Anti-Aliasing Digital Front-End Demodulation/
Filter Processing Synchronisation

~
N
N
\

/ ~_| | |A " | DSP/
| T > | FPGA [
* \__l ! LJ ! Host PC

—
=

LN

i i

> H; > (}@I

[}

[ \\|
~

p—

LO

Analog RF-Front-End \‘\-___Digitai_ant—_End'/ Baseband Processing

The digital front end consists of an Analog to Digital converter and a digital
down- converter to reduce the sample rate down to the bandwidth needed by

the application. Sampling rate of AD converters are rising up to 250Msps with
resolutions of 14 or 16 bits.




Microwave Recelver, Cont‘d.

Principal Arrangment for Typical Microwave Receivers

Preselection  LNA Mixer AGC Anti-Aliasing Digital Front-End Demodulation/
Filter Processing,~~ Synchronisation
“‘-.;"I E i
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Analog RF-Front-End Digital Front-End  Baseband Processing

The baseband processing takes over the base band filtering, AGC,
demodulation, and the signal regeneration..




Typical Analog Front End

Possible Drawbacks on the Analog Front End

VHF-UHF-SHF 4 GHz 400 MHz 21,4/57,4 MHz
77 Ms/s
X X N I~y A 16
~ ~Z ~o acimd
—» DDC —>| Dem.
360 Ms/s BW = 20 MHz
A 12 4 x
D O DDC
HF 0..30 MHz
77 Ms/s
. A 16 “» DDC FFT
/\/ > O
S D BW = 80 MHz

« Wide band microwave receivers need tripple conversion to prevent image reception
« Several expensive and switchable filters are required for pre- and IF-selection
« Intermodulation and Oscillator Phase Noise are the main issues

 Low noise and high dynamic range are contradictionary




Image Rejection Mixer

Solution to eliminate tripple Conversion

LP 1 90°

? cos(w,t)
LO IF out (LSB)

Rx in

sin(w,t)

LP

Image Rejection Mixer

An analog Image Rejection Mixer is capable to attenuate the Image by 30...40dB
Criterions for the image attenuation are amplitude and phase errors in both branches
The most critical element is the 90° phase shifter, mainly for wide band IF

The SDR technology allows to move the phase shifter from analog into the digital
part, where it can be realized nearly ideal by means of a Hilbert Transformer



Image Rejection Mixer

Solution with a distributed Image Rejection Mixer

high speed
AD-converters
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IF-frequency
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Baseband

The preselector filters may be wider, as they are no longer used for image rejection
The digital parts, following the AD converter, can be realized in a FPGA

In a wide band receiver, the LO can be tuned in steps from up to 10MHz which is
simplifying the PLL loop filter design. The fine tuning will be done by the NCO

The image rejection can be further improved by calibration algorithms in the digital
part to values up to 80dB



Microwave Monitoring Recelver

Requirements on a Monitoring Receiver

Fast detection of unknown signals
Search for activities over wide frequency ranges
Monitoring of individual frequencies, lists frequency ranges

Measurement of spectral characteristics of very short or rarely
occurring signals

Storage of activities
Triggering of further activities after a signal is detected

Demodulation of communications and/or transfer of demodulated
signals for processing

Integration into civil and military dedicated systems

Homing, i.e. localization of signal sources and direction finding
Simple coverage measurements

Measurements in line with ITU recommendations



Receiver, Cont‘d.

Multichannel Recelvers
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N - channel Receiver with N analog front ends




Receiver, Cont‘d.

Multichannel Recelvers >

AD Clk & 8 x DDC nc

CMTRL

¥

1 % Preselection -

AD Clk

1 x Reference

CMNTRL

N - channel Receiver with only one analog front end and N digital down
converters. The channel frequencies must be allocated inside the preselector

passband.
15



Receiver, Cont‘d.
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Multichannel Recelvers
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If all channels are equally spaced, then a Polyphase Filterbank can replace the

multiple channels in the downconverter



Typical Characteristics of Sampled Systems

Important Characteristics of sampled Systems

A(f)

* 1. zone 2. zone 3. zone

fs/2 fs 3fs/2

The Sampling Theorem (Nyquist / Shannon)

A bandlimited signal can be reconstructed, when B < fs/2

Due to aliasing, replicas in all Nyquist zones will occur

The aliasing effect can be used to sample a bandlimited signal B in a higher Nyquist
zone (bandpass- or undersampling)

B=(n-1)-fs/2..n-fs/2 whereas n is the zone (1,2, ...)



Typical Characteristics of AD Converters

Characteristics of AD Converters

ENOB

18

16 =

14 s
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bits

ENOB: the Effective usable Number Of Bits
SNR = 1.76dB + ENOB - 6.02dB

(measured in B = fs/2)




Characteristics of AD Converters, Cont‘d.

Characteristics of AD Converters

SNR [dB]
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Degradation of SNR by clock jitter
) very important when applying undersampling!




Characteristics of AD Converters

Important Characteristics of AD converters
IMD measured on R&S EM510 without Dithering

Pout [dBm)]
-20 R
—— 1. Order
-40
—&— IMD3
-60 —o— IMD5
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-100 F —S—IMD9
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Higher order intermodulation products as a function of the input signal. The known
relationship of n-dB/dB (n = order of IM) can not be applied. Therefore an Intercept
point cannot be calculated. In practice, the IM is measured with two tones on -7dBr




Characteristics of AD Converters

Important Characteristics of AD converters

IMD measured on R&S EM510, with Dithering

Pout [dBm]
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Applying dithering noise has the effect, that the discontinuities are no longer periodic
and therefore the spuriies are reduced.




Characteristics of AD Converters

Important Characteristics of AD converters

Altrernative Methode for IM measuring
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The NPR methode reflects the true impact of intermodulation from any order
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Characteristics of AD Converters

Important Characteristics of AD converters
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Theoretical NPR for 10, 12,14 and 16bit AD converter




Down Converters

Digital Down Converter
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The digital down converter includes:

« a numerically oscillator (NCO)

« acomplex IQ-mixer to convert the IF down to approx. OHz (zero-IF)
» several decimation filter stages for reducing the sampling rate
 final lowpass FIR-filters (Finite Impulse Response)




Down Converters

Digital Down Converter

integrator sections comb sections
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R: decimation factor
N: filter order
(sections)
M=1or2

fs: input sample
rate

B=fs/R

CIC-Filter with R =16, N =5, M =1 (CIC: Cascaded Integrator Comb)




Automatic Gain Control

Automatic Gain Control

T A
L]
F 3
~_ 0°
M % 90

&
f
y

BB-AGC
RF-AGC

¢l ©

[~ A
p2 0|~
L]

A

The broadband AGC serves to protect the AD converter from overvoltages. The
RF-AGC can be used to set the receiver sensitivity just below the external noise.

The digital processing part is free from distortions, therefore the final AGC can be
placed near the analog output.




Automatic Gain Control

Automatic Gain Control

delay 1...4ms

input BPF —— Audio proc @‘ output

ABS : ABS
main part p: coefs attack, decay
~ l_

—» LPF —> % —/»@—»LPF—» %

The main AGC control is realized near the of the signal processing chain as a feed
forward control.

preemptive part




Carrier Recovery

Carrier Recovery for Data Communication

Loop
<
Filter

Cos

5in
NCO

Example for the carrier synchronisation for a QPSK modulated catrrier.




Data Clock Extraction

Data clock extraction for Data Communication
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Example for a Timing Error Detector for a QPSK modulated signal according to
Gardner.




Widebnad Monitoring Recelver

R&S ESMD Wide Band Monitoring Receiver

Clearfwrite
Bandpass filter . ! ) Display
' Realtime spectrum
Realtime spactrum
1 kHz to 20 MHz LAN
Analog input signal V
Average
Bandpass filter
Peak
Laval Display

Demodulation and LAN

bandwidths
100 Hz to 20 MHz

1 measurament
]D Analog audio
Lowpass filter
Digital audio
via LAN
1/0 data
via LAN




Spectrum Analysis in Recelver

Spectrum Analysis in Communication Receivers
A aindBuV

/ c
n=1 - N = 4096
| "
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20 MHz

] -
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| = -

Frequency in MHz

The actual usable bandwidth is reduced by a factor k compared with the sampling rate
fs:

Bet = fS/K
In this exemple k = 1.28




Spectrum Analysis in Receiver, Cont‘d.

Spectrum Analysis in Communication Receivers

| FFT no. 6250 sss | FFT no. 1 |
Blackman Window
| « | |
! ' ! ' Anfs = 12.8Msps allows to process
[ T T T T 1] | | HERERN 6250 FFTs per second
| 12.8 millionth sample : | Sample Sample |
| | | no. 2047 no. 0 l
=1 -
Duration 1s
I I |
I I |
I | |
I | |
L || | [ ] | LI T T T T 1 puetothe applied window function,
| s  the capability to detect short pulses
Pulse at both ends of the window is

reduced

Solution: overlapping FFTs




Spectrum Analysis in Receiver, Cont‘d.

Spectrum Analysis in Communication Receivers

Computing Power for overlapping 2048 bins FFT and fs = 12.8Msps:
=~ 2GFLOPs (Floating Point Operations)
Internal computing power of the R&S®ESMD

2000 2 000 ooo 0.5




Spectrum Analysis in Receiver, Cont‘d.

Spectrum Analysis in Communication Receivers

=4
=s] max. 20 MHz
| = -
® FFT window 1 FFT window 2 FFT window n
OCRO---"0D=-=-=====- | Ea s |
I i I |
n="1 o n=X | | :
I I I
L :l : | :
: h ro- - ; -
| | :
| all |
start f&mp

Panorama Function with N consecutive FFT slices

—> for any bandwidth, but lacks in time resolution




Spectrum Analysis in Receiver, Cont‘d.

Spectrum Analysis in Communication Receivers

100% TIME

BANDWIDTH oEnoo AFC DETECT ATT MGC sau <R
15000 kHz OFF FAST 0.0dB AUTO -25.0 dBuv
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~ 40
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“ 500 ms
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-20.000 [MHz) 20,000 LOWERLMIT
120
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4.62ms

Narrowband Analysis

Wideband Analysis




Spectrum Analysis in Communication Receiver

Proof of Available Dynamic Range

Date: 2013-07-15 10:12:34 Comment:
BANDWIDTH DEMOD AFC DETECT ATT MGC sQu e O
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Aircraft Radio Communication Receiver can be monitored abd demodulated in
the presence of strong FM Radio signal




Spectrum Analysis in Communication Receiver

Multichannel (4) Operation

Date: 2013-07-15 10:10:31 Comment:
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All 4-Channels can be anlayzed




Typical Architecture of Communication Receiver

Filter portion of the front-end of the receiver
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Typical Down-Conversion Architecture

CONVERTER A

Br
21,6408 GHz ™
(20,6 ... 22,6) 23 GH=z
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Typical Down-Conversion Architecture

CONVERTER B

8,724 GHz
BW = 2GHz TP 15GHz

opt.
HMC 462

PE43502 ‘

7A€

5HZ Amp_ZFoul | | ZF Equalizer|
LO= 13,5168 GHz
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Down-converter of the receiver
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X8 (6,7584 GHz) LO2in + 3dB




Antenna for Communication Receiver

Typical Antennas for high dynmaic range Communications Receivers

Input level up to 0 dBm !




Conclusion

High Dynmaic Range Microwave Monitoring Receivers
Software Defined Radio

Analog Frond End: Pros & Cons

Image Rejection Mixer: Eliminate triple conversion
Important Characteristics of A/D converters

Important Characteristics of Down Converters
Characteristics of AGC

Carrier recovery of Data Communication

Spectrum Analysis of Communication Receiver

Typical Architecture of Communication Receiver
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